Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
1.
FEBS J ; 290(6): 1549-1562, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36181338

RESUMO

Sepsis often causes cell death via pyroptosis and hence results in septic cardiomyopathy. Triggering receptors expressed in myeloid cells-1 (TREM-1) may initiate cellular cascade pathways and, in turn, induce cell death and vital organ dysfunction in sepsis, but the evidence is limited. We set to investigate the role of TREM-1 on nucleotide-binding oligomerization domain-like receptors with pyrin domain-3 (NLRP3) inflammasome activation and cardiomyocyte pyroptosis in sepsis models using cardiac cell line (HL-1) and mice. In this study, TREM-1 was found to be significantly increased in HL-1 cells challenged with lipopolysaccharide (LPS). Pyroptosis was also significantly increased in the HL-1 cells challenged with lipopolysaccharide and an NLRP3 inflammasome activator, nigericin. The close interaction between TREM-1 and structural maintenance of chromosome 4 (SMC4) was also identified. Furthermore, inhibition of TREM-1 or SMC4 prevented the upregulation of NLRP3 and decreased Gasdermin-D, IL-1ß and caspase-1 cleavage. In mice subjected to caecal ligation and puncture, the TREM-1 inhibitor LR12 decreased the expression of NLRP3 and attenuated cardiomyocyte pyroptosis, leading to improved cardiac function and prolonged survival of septic mice. Our work demonstrates that, under septic conditions, TREM-1 plays a critical role in cardiomyocyte pyroptosis. Targeting TREM-1 and its associated molecules may therefore lead to novel therapeutic treatments for septic cardiomyopathy.


Assuntos
Inflamassomos , Miócitos Cardíacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Sepse , Receptor Gatilho 1 Expresso em Células Mieloides , Animais , Humanos , Camundongos , Adenosina Trifosfatases/imunologia , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/imunologia , Caspase 1/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/imunologia , Cromossomos Humanos Par 4/imunologia , Inflamassomos/agonistas , Inflamassomos/genética , Inflamassomos/imunologia , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/farmacologia , Células Mieloides/imunologia , Miócitos Cardíacos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Piroptose/genética , Piroptose/imunologia , Sepse/complicações , Sepse/genética , Sepse/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/antagonistas & inibidores , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Receptor Gatilho 1 Expresso em Células Mieloides/imunologia
2.
J Virol ; 96(2): e0106321, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34669512

RESUMO

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrated cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of interleukins (ILs) with clinical findings related to laboratory values in COVID-19 patients to identify plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes from healthy human subjects with SARS-CoV-2 in the absence and presence of IL-6 and IL-1ß. Infection resulted in increased numbers of multinucleated cells. Interleukin treatment and infection resulted in disorganization of myofibrils, extracellular release of troponin I, and reduced and erratic beating. Infection resulted in decreased expression of mRNA encoding key proteins of the cardiomyocyte contractile apparatus. Although interleukins did not increase the extent of infection, they increased the contractile dysfunction associated with viral infection of cardiomyocytes, resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health System show that a significant portion of COVID-19 patients without history of heart disease have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection might underlie heart disease in COVID-19 patients. IMPORTANCE SARS-CoV-2 infects multiple organs, including the heart. Analyses of hospitalized patients show that a substantial number without prior indication of heart disease or comorbidities show significant injury to heart tissue, assessed by increased levels of troponin in blood. We studied the cell biological and physiological effects of virus infection of healthy human iPSC-derived cardiomyocytes in culture. Virus infection with interleukins disorganizes myofibrils, increases cell size and the numbers of multinucleated cells, and suppresses the expression of proteins of the contractile apparatus. Viral infection of cardiomyocytes in culture triggers release of troponin similar to elevation in levels of COVID-19 patients with heart disease. Viral infection in the presence of interleukins slows down and desynchronizes the beating of cardiomyocytes in culture. The cell-level physiological changes are similar to decreases in left ventricular ejection seen in imaging of patients' hearts. These observations suggest that direct injury to heart tissue by virus can be one underlying cause of heart disease in COVID-19.


Assuntos
COVID-19/imunologia , Células-Tronco Pluripotentes Induzidas , Interleucina-10/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Miócitos Cardíacos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/virologia
3.
Microvasc Res ; 140: 104279, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34774582

RESUMO

BACKGROUND: CC chemokine receptor 5 (CCR5) has been demonstrated to be correlated to activation of pro-inflammatory immune cells and tissue injury. This study focused on the role of CCR5 in myocardial injury in rats with diabetic cardiomyopathy (DCM) and the mechanism of action. METHODS: A rat model of DCM was induced by streptozotocin (STZ). CCR5 was knocked down in rats to determine its role in myocardial injury and immune cell infiltration. The upstream regulators of CCR5 were bioinformatically predicted and the binding between nuclear receptor subfamily 4 group A member 2 (NR4A2) and CCR5 was validated. The portion of M1 and M2 macrophages in tissues was determined by flow cytometry or double-labeling immunofluorescence. Rat bone marrow mononuclear cells (BMMCs) were treated with granulocyte/macrophage colony stimulating factor (GM-CSF/M-CSF) and co-cultured with H9C2 cells for in vitro experiments. RESULTS: STZ-treated rats had impaired cardiac function and increased levels of creatine kinase-MB, cardiac troponin I and lactate dehydrogenase. CCR5 inhibition significantly alleviated myocardial injury in rats and reduced the portion of M1 macrophages in rat cardiac tissues. NR4A2, which could suppress CCR5 transcription, was poorly expressed in rats with DCM. NR4A2 overexpression played a similar myocardium-protective role in rats. In vitro, overexpression of NR4A2 induced M2 polarization of macrophages, which protected the co-cultured H9C2 cells from high glucose-induced damage, but the protective role was blocked after CCR5 overexpression. CONCLUSION: This study demonstrated that NR4A2 suppresses CCR5 expression and promotes M2 polarization of macrophages to alleviate cardiomyocyte loss and myocardial injury.


Assuntos
Cardiomiopatias Diabéticas , Macrófagos , Miócitos Cardíacos , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Receptores CCR5 , Transcrição Gênica , Animais , Masculino , Linhagem Celular , Técnicas de Cocultura , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/imunologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Modelos Animais de Doenças , Regulação para Baixo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fenótipo , Ratos Sprague-Dawley , Receptores CCR5/genética , Receptores CCR5/metabolismo , Transdução de Sinais
4.
Cardiovasc Res ; 118(1): 169-183, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33560342

RESUMO

AIMS: Myocardial infarction (MI) is the most common cause of heart failure (HF) worldwide. G protein-coupled receptor kinase 5 (GRK5) is upregulated in failing human myocardium and promotes maladaptive cardiac hypertrophy in animal models. However, the role of GRK5 in ischemic heart disease is still unknown. In this study, we evaluated whether myocardial GRK5 plays a critical role post-MI in mice and included the examination of specific cardiac immune and inflammatory responses. METHODS AND RESULTS: Cardiomyocyte-specific GRK5 overexpressing transgenic mice (TgGRK5) and non-transgenic littermate control (NLC) mice as well as cardiomyocyte-specific GRK5 knockout mice (GRK5cKO) and wild type (WT) were subjected to MI and, functional as well as structural changes together with outcomes were studied. TgGRK5 post-MI mice showed decreased cardiac function, augmented left ventricular dimension and decreased survival rate compared to NLC post-MI mice. Cardiac hypertrophy and fibrosis as well as fetal gene expression were increased post-MI in TgGRK5 compared to NLC mice. In TgGRK5 mice, GRK5 elevation produced immuno-regulators that contributed to the elevated and long-lasting leukocyte recruitment into the injured heart and ultimately to chronic cardiac inflammation. We found an increased presence of pro-inflammatory neutrophils and macrophages as well as neutrophils, macrophages and T-lymphocytes at 4-days and 8-weeks respectively post-MI in TgGRK5 hearts. Conversely, GRK5cKO mice were protected from ischemic injury and showed reduced early immune cell recruitment (predominantly monocytes) to the heart, improved contractility and reduced mortality compared to WT post-MI mice. Interestingly, cardiomyocyte-specific GRK2 transgenic mice did not share the same phenotype of TgGRK5 mice and did not have increased cardiac leukocyte migration and cytokine or chemokine production post-MI. CONCLUSIONS: Our study shows that myocyte GRK5 has a crucial and GRK-selective role on the regulation of leucocyte infiltration into the heart, cardiac function and survival in a murine model of post-ischemic HF, supporting GRK5 inhibition as a therapeutic target for HF.


Assuntos
Quimiotaxia de Leucócito , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/enzimologia , Leucócitos/metabolismo , Infarto do Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Função Ventricular Esquerda , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Quinase 5 de Receptor Acoplado a Proteína G/genética , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Mediadores da Inflamação/metabolismo , Leucócitos/imunologia , Camundongos Knockout , Contração Miocárdica , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Transdução de Sinais , Volume Sistólico , Transcriptoma , Pressão Ventricular
5.
Cardiovasc Res ; 118(2): 573-584, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576779

RESUMO

AIMS: Angiotensin (Ang) II signalling has been suggested to promote cardiac fibrosis in inflammatory heart diseases; however, the underlying mechanisms remain obscure. Using Agtr1a-/- mice with genetic deletion of angiotensin receptor type 1 (ATR1) and the experimental autoimmune myocarditis (EAM) model, we aimed to elucidate the role of Ang II-ATR1 pathway in development of heart-specific autoimmunity and post-inflammatory fibrosis. METHODS AND RESULTS: EAM was induced in wild-type (WT) and Agtr1a-/- mice by subcutaneous injections with alpha myosin heavy chain peptide emulsified in complete Freund's adjuvant. Agtr1a-/- mice developed myocarditis to a similar extent as WT controls at day 21 but showed reduced fibrosis and better systolic function at day 40. Crisscross bone marrow chimaera experiments proved that ATR1 signalling in the bone marrow compartment was critical for cardiac fibrosis. Heart infiltrating, bone-marrow-derived cells produced Ang II, but lack of ATR1 in these cells reduced transforming growth factor beta (TGF-ß)-mediated fibrotic responses. At the molecular level, Agtr1a-/- heart-inflammatory cells showed impaired TGF-ß-mediated phosphorylation of Smad2 and TAK1. In WT cells, TGF-ß induced formation of RhoA-GTP and RhoA-A-kinase anchoring protein-Lbc (AKAP-Lbc) complex. In Agtr1a-/- cells, stabilization of RhoA-GTP and interaction of RhoA with AKAP-Lbc were largely impaired. Furthermore, in contrast to WT cells, Agtr1a-/- cells stimulated with TGF-ß failed to activate canonical Wnt pathway indicated by suppressed activity of glycogen synthase kinase-3 (GSK-3)ß and nuclear ß-catenin translocation and showed reduced expression of Wnts. In line with these in vitro findings, ß-catenin was detected in inflammatory regions of hearts of WT, but not Agtr1a-/- mice and expression of canonical Wnt1 and Wnt10b were lower in Agtr1a-/- hearts. CONCLUSION: Ang II-ATR1 signalling is critical for development of post-inflammatory fibrotic remodelling and dilated cardiomyopathy. Our data underpin the importance of Ang II-ATR1 in effective TGF-ß downstream signalling response including activation of profibrotic Wnt/ß-catenin pathway.


Assuntos
Angiotensina II/metabolismo , Doenças Autoimunes/metabolismo , Autoimunidade , Linfócitos T CD4-Positivos/metabolismo , Miocardite/metabolismo , Miócitos Cardíacos/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Via de Sinalização Wnt , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Camundongos Endogâmicos BALB C , Camundongos Knockout , Miocardite/genética , Miocardite/imunologia , Miocardite/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Receptor Tipo 1 de Angiotensina/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
6.
Front Immunol ; 12: 782891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925364

RESUMO

Benznidazole (Bzl), the drug of choice in many countries for the treatment of Chagas disease, leads to parasite clearance in the early stages of infection and contributes to immunomodulation. In addition to its parasiticidal effect, Bzl inhibits the NF-κB pathway. In this regard, we have previously described that this occurs through IL-10/STAT3/SOCS3 pathway. PI3K pathway is involved in the regulation of the immune system by inhibiting NF-κB pathway through STAT3. In this work, the participation of PI3K in the immunomodulatory effects of Bzl in cardiac and immune cells, the main targets of Chagas disease, was further studied. For that, we use a murine primary cardiomyocyte culture and a monocyte/macrophage cell line (RAW 264.7), stimulated with LPS in presence of LY294002, an inhibitor of PI3K. Under these conditions, Bzl could neither increase SOCS3 expression nor inhibit the NOS2 mRNA expression and the release of NOx, both in cardiomyocytes and macrophages. Macrophages are crucial in the development of Chronic Chagas Cardiomyopathy. Thus, to deepen our understanding of how Bzl acts, the expression profile of M1-M2 macrophage markers was evaluated. Bzl inhibited the release of NOx (M1 marker) and increased the expression of Arginase I (M2 marker) and a negative correlation was found between them. Besides, LPS increased the expression of pro-inflammatory cytokines. Bzl treatment not only inhibited this effect but also increased the expression of typical M2-macrophage markers like Mannose Receptor, TGF-ß, and VEGF-A. Moreover, Bzl increased the expression of PPAR-γ and PPAR-α, known as key regulators of macrophage polarization. PI3K directly regulates M1-to-M2 macrophage polarization. Since p110δ, catalytic subunit of PI3Kδ, is highly expressed in immune cells, experiments were carried out in presence of CAL-101, a specific inhibitor of this subunit. Under this condition, Bzl could neither increase SOCS3 expression nor inhibit NF-κB pathway. Moreover, Bzl not only failed to inhibit the expression of pro-inflammatory cytokines (M1 markers) but also could not increase M2 markers. Taken together these results demonstrate, for the first time, that the anti-inflammatory effect of Bzl depends on PI3K activity in a cell line of murine macrophages and in primary culture of neonatal cardiomyocytes. Furthermore, Bzl-mediated increase expression of M2-macrophage markers involves the participation of the p110δ catalytic subunit of PI3Kδ.


Assuntos
Anti-Inflamatórios/farmacologia , Cardiomiopatia Chagásica/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Nitroimidazóis/farmacologia , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/uso terapêutico , Cardiomiopatia Chagásica/imunologia , Cromonas/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Morfolinas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Nitroimidazóis/uso terapêutico , Cultura Primária de Células , Células RAW 264.7
7.
Cell Physiol Biochem ; 55(6): 679-703, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34791861

RESUMO

Viral diseases are a major threat to modern society and the global health system. It is therefore of utter relevance to understand the way viruses affect the host as a basis to find new treatment solutions. The understanding of viral myocarditis (VMC) is incomplete and effective treatment options are lacking. This review will discuss the mechanism, effects, and treatment options of the most frequent myocarditis-causing viruses namely enteroviruses such as Coxsackievirus B3 (CVB3) and Parvovirus B19 (PVB19) on the human heart. Thereby, we focus on: 1. Viral entry: CVB3 use Coxsackievirus-Adenovirus-Receptor (CAR) and Decay Accelerating Factor (DAF) to enter cardiac myocytes while PVB19 use the receptor globoside (Gb4) to enter cardiac endothelial cells. 2. Immune system responses: The innate immune system mediated by activated cardiac toll-like receptors (TLRs) worsen inflammation in CVB3-infected mouse hearts. Different types of cells of the adaptive immune system are recruited to the site of inflammation that have either protective or adverse effects during VMC. 3. Autophagy: CVB3 evades autophagosomal degradation and misuses the autophasomal pathway for viral replication and release. 4. Viral replication sites: CVB3 promotes the formation of double membrane vesicles (DMVs), which it uses as replication sites. PVB19 uses the host cell nucleus as the replication site and uses the host cell DNA replication system. 5. Cell cycle manipulation: CVB3 attenuates the cell cycle at the G1/S phase, which promotes viral transcription and replication. PVB19 exerts cell cycle arrest in the S phase using its viral endonuclease activity. 6. Regulation of apoptosis: Enteroviruses prevent apoptosis during early stages of infection and promote cell death during later stages by using the viral proteases 2A and 3C, and viroporin 2B. PVB19 promotes apoptosis using the non-structural proteins NS1 and the 11 kDa protein. 7. Energy metabolism: Dysregulation of respiratory chain complex expression, activity and ROS production may be altered in CVB3- and PVB19-mediated myocarditis. 8. Ion channel modulation: CVB3-expression was indicated to alter calcium and potassium currents in Xenopus laevis oocytes and rodent cardiomyocytes. The phospholipase 2-like activity of PVB19 may alter several calcium, potassium and sodium channels. By understanding the general pathophysiological mechanisms of well-studied myocarditis-linked viruses, we might be provided with a guideline to handle other less-studied human viruses.


Assuntos
Infecções por Coxsackievirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Miocardite , Infecções por Parvoviridae/imunologia , Parvovirus B19 Humano/fisiologia , Replicação Viral , Infecções por Coxsackievirus/patologia , Humanos , Miocardite/imunologia , Miocardite/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/virologia , Infecções por Parvoviridae/patologia , Receptores Virais/imunologia
8.
PLoS One ; 16(9): e0256734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34469488

RESUMO

OBJECTIVES: This study is to investigate whether the cardiac microvascular endothelial cells (CMECs) can regulate the autophagy of cardiomyocytes (CMs) by secreting lncRNA-ANRIL/miR-181b exosomes, thus participating in the occurrence of uremic cardiovascular disease (CVD). METHODS: A 5/6 nephrectomy uremia model was established, with the mice injected with ANRIL-shRNA lentivirus vector, miR-181b agomir, and related control reagents, containing the serum creatinine and urea nitrogen measured. The renal tissue sections of mice were stained with Periodic Acid-Schiff (PAS), TUNEL, and Hematoxylin-Eosin (HE) performed on myocardial tissue sections of mice. ANRIL-shRNA, miR-181b mimics, and related control reagents were transfected into CMECs, in which the exosomes were extracted and co-cultured with CMs. The expressions of ANRIL, miR-181b and ATG5 were detected by qRT-PCR, and the expressions of autophagy related proteins by Western blot, as well as the binding of ANRIL and miR-181b by the double luciferase reporter gene experiment. RESULTS: ANRIL down-regulation or miR-181b up-regulation can increase the weight of mice with uremia, as well as the expressions of p62 and miR-181b, and reduce the content of serum creatinine and urea nitrogen, the damage of kidney and myocardial tissues, the number of apoptotic cells in myocardial tissues, as well as the expressions of ANRIL, ATG5, Beclin1, and LC3. CMs can absorb the exosomes of CMECs. Compared with IS+ CMEC-Exo group, the expressions of ANRIL and ATG5 in CMs of IS+ CMEC-Exo + sh lncRNA ANRIL and IS+CMEC-Exo+miR-181b mimics groups was down-regulated, as well as the expressions of ATG5, Beclin1, and LC3, while miR-181b expression was up-regulated as well as P62 expression. CONCLUSIONS: CMECs can regulate autophagy of CMs by releasing exosomes containing ANRIL and miR-181b.


Assuntos
Proteína 5 Relacionada à Autofagia/genética , Autofagia/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Uremia/imunologia , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Exossomos/metabolismo , Humanos , Masculino , Camundongos , MicroRNAs/genética , Microvasos/citologia , Miocárdio/citologia , Miocárdio/imunologia , Miocárdio/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , RNA Longo não Codificante/genética , Regulação para Cima/imunologia , Uremia/genética , Uremia/patologia
9.
Int Arch Allergy Immunol ; 182(12): 1245-1254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34428765

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) is a kind of chronic inflammatory disease characterized by the release of inflammatory cytokines and cardiomyocyte apoptosis, which lead to increased riskfor heart diseases. This study aims to explore the possible effect and mechanism of Celastrol on RA induced cardiac impairments in rats. METHODS: Collagen induced RA wistar rat models (CIA) were established for the measurement on secondary foot swelling degree, polyarthritis index score, spleen and thymus index. Pathological morphology was observed using H&E staining. Heart fibrosis was measured after Sirius red staining, while cell apoptosis was determined by TUNEL staining. For in vitro experiments, rat cardiomyocytes were isolated to determine the inflammatory cytokine secretion and cell apoptosis using ELISA and flow cytometry, respectively. Protein expressions of related index and autophagy were detected by Western blot and immunofluorescence. RESULTS: CIA rat model was successfully established and characterized by severe secondary foot swelling degree, and increased polyarthritis index score and spleen and thymus index. Synovial hyperplasia, disordered cardiomyocytes, cell infiltration and fibrosis were also observed in CIA rat model. Compared with CIA model, Celastrol treatment could suppress the release of inflammatory cytokines, including TNF-α, IL-6, IL-1ß, as well as inhibiting the expressions of Bax, cleaved caspase3, collagen I, collagen III and α-SMA. In addition to that, Celastrol treatment can attenuate cell apoptosis and fibrosis of cardiomyocytes and elevate Bcl-2 expression. RA induced cell autophagy can be suppressed by Celastrol through inhibiting the activation of TLR2/HMGB1 signal pathway. CONCLUSION: Celastrol can regulate TLR2/HMGB1 signal pathway to suppress autophagy and therefore exert cardioprotective effect in RA.


Assuntos
Artrite Reumatoide/complicações , Autofagia/efeitos dos fármacos , Cardiotônicos/farmacologia , Proteína HMGB1/metabolismo , Cardiopatias/prevenção & controle , Triterpenos Pentacíclicos/farmacologia , Receptor 2 Toll-Like/metabolismo , Animais , Apoptose/efeitos dos fármacos , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Biomarcadores/metabolismo , Western Blotting , Cardiotônicos/uso terapêutico , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Cardiopatias/etiologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Marcação In Situ das Extremidades Cortadas , Camundongos Endogâmicos DBA , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Triterpenos Pentacíclicos/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
10.
Aging (Albany NY) ; 13(16): 20534-20551, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34432650

RESUMO

OBJECTIVE: The NOD-like receptor protein 3 (NOD-like receptor protein 3, NLRP3) inflammasome is associated with many physiological processes related to aging. We investigated whether NLRP3 inflammasome activation contributes to the pathogenesis of cardiocytes aging dissected the underlying mechanism. METHODS: H9c2 cells were treated with different concentrations of D-galactose (D-gal, 0, 2, 10 and 50 g/L) for 24 hours. The cytochemical staining, flow cytometry and fluorescence microscope analysis were employed to detect the ß-galactosidase (ß-gal) activity. Western blot analysis was used to detect the age-associated proteins (P53, P21) and NLRP3 inflammasome proteins [NLRP3, apoptosis-associated speck-like protein (ASC)]. Confocal fluorescent images were applied to capture the colocalization of NLRP3 and caspase-1. Intracellular reactive oxygen species (ROS) was measured using 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA) by flow cytometry and visualized using a fluorescence microscope. The IL-1ß, IL-18 and lactate dehydrogenase (LDH) release were also detected. RESULTS: D-gal induced-H9c2 cells caused cardiocytes' aging changes (ß-gal staining, CellEvent™ Senescence Green staining, P53, P21) in a concentration-dependent manner. NLRP3 inflammasomes were activated, IL-1ß, IL-18 and LDH release and ROS generation were increased in the cardiocytes aging progress. When MCC950 inhibited NLRP3 inflammasomes, it attenuated the cardiocytes aging, yet the ROS generation was similar. Inhibition of ROS by NAC attenuated cardiocytes aging and inhibited the NLRP3 inflammasome activation at the same time. NLRP3 inflammasome activation by nigericin-induced cardiocytes cells aging progress. CONCLUSIONS: NLRP3 inflammasome activation contributes to the pathogenesis of cardiocytes aging, and ROS generation may serve as a potential mechanism by which NLRP3 inflammasome is activated.


Assuntos
Envelhecimento/imunologia , Inflamassomos/imunologia , Miócitos Cardíacos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Envelhecimento/genética , Animais , Caspase 1/genética , Caspase 1/imunologia , Senescência Celular , Humanos , Inflamassomos/genética , Miócitos Cardíacos/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ratos , Espécies Reativas de Oxigênio/imunologia
11.
Int J Med Sci ; 18(14): 3318-3325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34400901

RESUMO

Purpose: Hydrogen (H2) is an antioxidant with anti-inflammatory and apoptosis functions.This study aimed to estimate the effects of H2 on acute myocardial infarction (AMI) in rats and its association with the inhibition of oxidative stress and cardiomyocyte pyroptosis. Methods: Sixty-four rats were randomly divided into three groups (Sham, AMI, and H2). The left anterior descending coronary artery (LAD) of rats in the AMI and H2 groups was ligated, while rats in the Sham group were threaded without ligation. In addition, 2% H2 was administered by inhalation for 24 h after ligation in the H2 group. Transthoracic echocardiography was performed after H2 inhalation, followed by collection of the serum and cardiac tissue of all rats. Results: H2 inhalation ameliorated the cardiac dysfunction, infarct size and inflammatory cell infiltration caused by AMI. Meanwhile, H2 inhalation reduced the concentration of serum Troponin I (TnI), brain natriuretic peptide (BNP), reactive oxygen species (ROS), cardiac malondialdehyde (MDA), and 8-OHdG. In addition, H2 inhalation inhibited cardiac inflammation and pyroptosis relative proteins expression. Conclusion: H2 effectively promoted heart functions in AMI rats by regulating oxidative stress and pyroptosis.


Assuntos
Antioxidantes/administração & dosagem , Hidrogênio/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Administração por Inalação , Animais , Modelos Animais de Doenças , Ecocardiografia , Humanos , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/diagnóstico , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Piroptose/efeitos dos fármacos , Piroptose/imunologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
12.
J Immunol Res ; 2021: 1815098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307691

RESUMO

Adiponectin is a small peptide secreted and a key component of the endocrine system and immune system. Although globular adiponectin protects myocardial ischemia/reperfusion-induced cardiomyocyte injury, the protective mechanisms remain largely unresolved. Using a neonatal rat ventricular myocyte hypoxia/reoxygenation model, we investigated the role of its potential mechanisms of necroptosis in globular adiponectin-mediated protection in hypoxia/reoxygenation-induced cardiomyocyte injury as compared to apoptosis. We found that globular adiponectin treatment attenuated cardiomyocyte injury as indicated by increased cell viability and reduced lactate dehydrogenase release following hypoxia/reoxygenation. Immunofluorescence staining and Western blotting demonstrated that both necroptosis and apoptosis were triggered by hypoxia/reoxygenation and diminished by globular adiponectin. Necrostatin-1 (RIP1-specific inhibitor) and Z-VAD-FMK (pan-caspase inhibitor) only mimicked the inhibition of necroptosis and apoptosis, respectively, by globular adiponectin in hypoxia/reoxygenation-treated cardiomyocytes. Globular adiponectin attenuated reactive oxygen species production, oxidative damage, and p38MAPK and NF-κB signaling, all important for necroptosis and apoptosis. Collectively, our study suggests that globular adiponectin inhibits hypoxia/reoxygenation-induced necroptosis and apoptosis in cardiomyocytes probably by reducing oxidative stress and interrupting p38MAPK signaling.


Assuntos
Adiponectina/metabolismo , Traumatismo por Reperfusão Miocárdica/imunologia , Miócitos Cardíacos/patologia , Animais , Animais Recém-Nascidos , Apoptose/imunologia , Hipóxia Celular/imunologia , Sobrevivência Celular , Células Cultivadas , Meios de Cultura/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/imunologia , Necroptose/imunologia , Estresse Oxidativo/imunologia , Gravidez , Cultura Primária de Células , Ratos , Espécies Reativas de Oxigênio/metabolismo
13.
J Immunol Res ; 2021: 9979843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307696

RESUMO

Ischemic heart disease is a leading cause of mortality and morbidity worldwide. We previously demonstrated that acacetin protects against myocardial ischemia reperfusion injury in rats, although the underlying mechanism remains to be elucidated. In the present study, we investigated the effects of acacetin on autophagy during hypoxia/reoxygenation (H/R) injury by exposing H9c2 myocardial cells to H/R with or without acacetin pretreatment during hypoxia. Our results show that acacetin significantly increased cell viability in a dose-dependent manner, enhanced antioxidant capacity, and suppressed protein apoptosis of rat cardiomyocytes H9c2 cells following H/R injury. In addition, lentiviral infection of H9c2 cardiomyocytes revealed that acacetin pretreatment significantly enhanced the fluorescence intensity of autophagy proteins Beclin 1, LC3-II, and p62. These results indicate that acacetin protected H9c2 cardiomyocytes from H/R damage by enhancing autophagy. Moreover, we found that application of acacetin increased activation of the PI3K/Akt signaling pathway, whereas cotreatment with the PI3K inhibitor LY294002 reversed the inhibition of apoptosis and autophagy induced by acacetin. In conclusion, acacetin mitigated H/R injury by promoting autophagy through activating the PI3K/Akt/mTOR signaling pathway.


Assuntos
Flavonas/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Autofagia/efeitos dos fármacos , Autofagia/imunologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/imunologia , Linhagem Celular , Cromonas/farmacologia , Modelos Animais de Doenças , Flavonas/uso terapêutico , Humanos , Morfolinas/farmacologia , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
14.
Cardiovasc Res ; 117(13): 2639-2651, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34117866

RESUMO

AIMS: Interleukin-1ß (IL-1ß) is an important pathogenic factor in cardiovascular diseases including chronic heart failure (HF). The CANTOS trial highlighted that inflammasomes as primary sources of IL-1 ß are promising new therapeutic targets in cardiovascular diseases. Therefore, we aimed to assess inflammasome activation in failing hearts to identify activation patterns of inflammasome subtypes as sources of IL-1ß. METHODS AND RESULTS: Out of the four major inflammasome sensors tested, expression of the inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) increased in human HF regardless of the aetiology (ischaemic or dilated cardiomyopathy), while the NLRP1/NALP1 and NLRP3 (NLR family, pyrin domain containing 1 and 3) inflammasome showed no change in HF samples. AIM2 expression was primarily detected in monocytes/macrophages of failing hearts. Translational animal models of HF (pressure or volume overload, and permanent coronary artery ligation in rat, as well as ischaemia/reperfusion-induced HF in pigs) demonstrated activation pattern of AIM2 similar to that of observed in end-stages of human HF. In vitro AIM2 inflammasome activation in human Tohoku Hospital Pediatrics-1 (THP-1) monocytic cells and human AC16 cells was significantly reduced by pharmacological blockade of pannexin-1 channels by the clinically used uricosuric drug probenecid. Probenecid was also able to reduce pressure overload-induced mortality and restore indices of disease severity in a rat chronic HF model in vivo. CONCLUSIONS: This is the first report showing that AIM2 and NLRC4 inflammasome activation contribute to chronic inflammation in HF and that probenecid alleviates chronic HF by reducing inflammasome activation. The present translational study suggests the possibility of repositioning probenecid for HF indications.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Insuficiência Cardíaca/metabolismo , Inflamassomos/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Superfície Celular/metabolismo , Adolescente , Adulto , Idoso , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Estudos de Casos e Controles , Conexinas/antagonistas & inibidores , Conexinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Inflamassomos/imunologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Probenecid/farmacologia , Ratos Wistar , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Transdução de Sinais , Sus scrofa , Células THP-1 , Função Ventricular Esquerda , Adulto Jovem
15.
J Cell Mol Med ; 25(14): 6500-6510, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34092017

RESUMO

After a myocardial infarction (MI), the inflammatory responses are induced and assist to repair ischaemic injury and restore tissue integrity, but excessive inflammatory processes promote abnormal cardiac remodelling and progress towards heart failure. Thus, a timely resolution of inflammation and a firmly regulated balance between regulatory and inflammatory mechanisms can be helpful. Molecular- and cellular-based approaches modulating immune response post-MI have emerged as a promising therapeutic strategy. Exosomes are essential mediators of cell-to-cell communications, which are effective in modulating immune responses and immune cells following MI, improving the repair process of infarcted myocardium and maintaining ventricular function via the crosstalk among immune cells or between immune cells and myocardial cells. The present review aimed to seek the role of immune cell-secreted exosomes in infarcted myocardium post-MI, together with mechanisms behind their repairing impact on the damaged myocardium. The exosomes we focus on are secreted by classic immune cells including macrophages, dendritic cells, regulatory T cells and CD4+ T cells; however, further research is demanded to determine the role of exosomes secreted by other immune cells, such as B cells, neutrophils and mast cells, in infarcted myocardium after MI. This knowledge can assist in the development of future therapeutic strategies, which may benefit MI patients.


Assuntos
Exossomos/imunologia , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Miocárdio/imunologia , Miocárdio/patologia , Miócitos Cardíacos/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Função Ventricular Esquerda/genética , Função Ventricular Esquerda/imunologia
16.
Biochem Pharmacol ; 190: 114597, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33965393

RESUMO

Myocardial infarction (MI) is one of the major contributors to cardiovascular morbidity and mortality. Excess inflammation significantly contributes to cardiac remodeling and heart failure after MI. Accumulating evidence has shown the central role of cellular metabolism in regulating the differentiation and function of cells. Metabolic rewiring is particularly relevant for proinflammatory responses induced by ischemia. Hypoxia reduces mitochondrial oxidative phosphorylation (OXPHOS) and induces increased reliance on glycolysis. Moreover, activation of a proinflammatory transcriptional program is associated with preferential glucose metabolism in leukocytes. An improved understanding of the mechanisms that regulate metabolic adaptations holds the potential to identify new metabolic targets and strategies to reduce ischemic cardiac damage, attenuate excess local inflammation and ultimately prevent the development of heart failure. Among possible drug targets, glucose transporter 1 (GLUT1) gained considerable interest considering its pivotal role in regulating glucose availability in activated leukocytes and the availability of small molecules that selectively inhibit it. Therefore, we summarize current evidence on the role of GLUT1 in leukocytes (focusing on macrophages and T cells) and non-leukocytes, including cardiomyocytes, endothelial cells and fibroblasts regarding ischemic heart disease. Beyond myocardial infarction, we can foresee the role of GLUT1 blockers as a possible pharmacological approach to limit pathogenic inflammation in other conditions driven by excess sterile inflammation.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/imunologia , Imunoterapia/métodos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/imunologia , Animais , Fármacos Cardiovasculares/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Humanos , Imunoterapia/tendências , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos
17.
Biofactors ; 47(4): 674-685, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33979459

RESUMO

Previous studies showed that interleukin-9 (IL-9) is involved in cardiovascular diseases, including hypertension and cardiac fibrosis. This study aimed to investigate the role of IL-9 in lipopolysaccharide (LPS)-induced myocardial cell (MC) apoptosis. Mice were treated with LPS, and IL-9 expression was measured and the results showed that compared with WT mice, LPS-treated mice exhibited increased cardiac Mø-derived IL-9. Additionally, the effects of IL-9 deficiency (IL-9-/-) on macrophage (Mø)-related oxidative stress and MC apoptosis were evaluated, the results showed that IL-9 knockout significantly exacerbated cardiac dysfunction, inhibited Nrf2 nuclear transfer, promoted an imbalance in M1 and M2 Møs, and exacerbated oxidative stress and MC apoptosis in LPS-treated mice. Treatment with ML385, a specific nuclear factor erythroid-2 related factor 2 (Nrf2) pathway inhibitor significantly alleviated the above effects in LPS-treated IL-9-/- mice. Bone marrow-derived Møs from wild-type (WT) mice and IL-9-/- mice were treated with LPS, and the differentiation and oxidative stress levels of Møs were measured. The effect of Mø differentiation on mouse MC apoptosis was also analyzed in vitro. The results showed that LPS-induced M1 Mø/M2 Mø imbalance and Mø-related oxidative stress were alleviated by IL-9 knockout but were exacerbated by ML385 treatment. The protective effects of IL-9 deficiency on the MC apoptosis mediated by LPS-treated Møs were reversed by ML-385. Our results suggest that deletion of IL-9 decreased the nuclear translocation of Nrf2 in Møs, which further aggravated Mø-related oxidative stress and MC apoptosis. IL-9 may be a target for the prevention of LPS-induced cardiac injury.


Assuntos
Apoptose/genética , Interleucina-9/genética , Macrófagos/patologia , Miocardite/genética , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/genética , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Apoptose/imunologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica , Interleucina-9/deficiência , Interleucina-9/imunologia , Lipopolissacarídeos/administração & dosagem , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Miocardite/induzido quimicamente , Miocardite/imunologia , Miocardite/patologia , Miócitos Cardíacos/imunologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/imunologia , Estresse Oxidativo , Cultura Primária de Células , Transporte Proteico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/imunologia , Receptores de Interleucina-9/genética , Receptores de Interleucina-9/imunologia , Transdução de Sinais , Tiazóis/farmacologia , Função Ventricular Esquerda/fisiologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/imunologia
20.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33811184

RESUMO

Coronaviruses are adept at evading host antiviral pathways induced by viral double-stranded RNA, including interferon (IFN) signaling, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR). While dysregulated or inadequate IFN responses have been associated with severe coronavirus infection, the extent to which the recently emerged SARS-CoV-2 activates or antagonizes these pathways is relatively unknown. We found that SARS-CoV-2 infects patient-derived nasal epithelial cells, present at the initial site of infection; induced pluripotent stem cell-derived alveolar type 2 cells (iAT2), the major cell type infected in the lung; and cardiomyocytes (iCM), consistent with cardiovascular consequences of COVID-19 disease. Robust activation of IFN or OAS-RNase L is not observed in these cell types, whereas PKR activation is evident in iAT2 and iCM. In SARS-CoV-2-infected Calu-3 and A549ACE2 lung-derived cell lines, IFN induction remains relatively weak; however, activation of OAS-RNase L and PKR is observed. This is in contrast to Middle East respiratory syndrome (MERS)-CoV, which effectively inhibits IFN signaling and OAS-RNase L and PKR pathways, but is similar to mutant MERS-CoV lacking innate immune antagonists. Remarkably, OAS-RNase L and PKR are activated in MAVS knockout A549ACE2 cells, demonstrating that SARS-CoV-2 can induce these host antiviral pathways despite minimal IFN production. Moreover, increased replication and cytopathic effect in RNASEL knockout A549ACE2 cells implicates OAS-RNase L in restricting SARS-CoV-2. Finally, while SARS-CoV-2 fails to antagonize these host defense pathways, which contrasts with other coronaviruses, the IFN signaling response is generally weak. These host-virus interactions may contribute to the unique pathogenesis of SARS-CoV-2.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/virologia , Imunidade Inata , Pulmão/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/virologia , RNA de Cadeia Dupla/metabolismo , SARS-CoV-2/imunologia , Células A549 , Endorribonucleases/metabolismo , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Nariz/virologia , Replicação Viral , eIF-2 Quinase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...